Jumat, 04 Juni 2010

Meristem - Apical meristems

The apical meristem, or growing tip, is a completely undifferentiated meristematic tissue found in the buds and growing tips of roots in plants. Its main function is to begin growth of new cells in young seedlings at the tips of roots and shoots (forming buds, among other things). Specifically, an active apical meristem lays down a growing root or shoot behind itself, pushing itself forward. Apical meristems are very small, compared to the cylinder-shaped lateral meristems (see 'Secondary Meristems' below).

Apical meristems are composed of several layers. The number of layers varies according to plant type. In general the outermost layer is called the tunica while the innermost layers are the corpus. In monocots, the tunica determine the physical characteristics of the leaf edge and margin. In dicots, layer two of the corpus determine the characteristics of the edge of the leaf. The corpus and tunica play a critical part of the plant physical appearance as all plant cells are formed from the meristems. Apical meristems are found in two locations: the root and the stem. Some Arctic plants have an apical meristem in the lower/middle parts of the plant. It is thought that this kind of meristem evolved because it is advantageous in Arctic conditions[citation needed].

Shoot apical meristems

The source of all above-ground organs. Cells at the shoot apical meristem summit serve as stem cells to the surrounding peripheral region, where they proliferate rapidly and are incorporated into differentiating leaf or flower primordia.

The shoot apical meristem is the site of most of the embryogenesis in flowering plants. Primordia of leaves, sepals, petals, stamens and ovaries are initiated here at the rate of one every time interval, called a plastochron. It is where the first indications that flower development has been evoked are manifested. One of these indications might be the loss of apical dominance and the release of otherwise dormant cells to develop as axillary shoot meristems, in some species in axils of primordia as close as two or three away from the apical dome. The shoot apical meristem consists of 4 distinct cell groups: -.

  • Stem cells
  • The immediate daughter cells of the stem cells
  • A subjacent organising centre
  • Founder cells for organ initiation in surrounding regions

The four distinct zones mentioned above are maintained by a complex signalling pathway. In Arabidopsis thaliana , 3 interacting CLAVATA genes are required to regulate the size of the stem cell reservoir in the shoot apical meristem by controlling the rate of cell division. CLV1 and CLV2 are predicted to form a receptor complex (of the LRR receptor like kinase family) to which CLV3 is a ligand. CLV3 shares some homology with the ESR proteins of maize, with a short 14 amino acid region being conserved between the proteins. Proteins that contain these conserved regions have been grouped into the CLE family of proteins.

CLV1 has been shown to interact with several cytoplasmic proteins that are most likely involved in downstream signalling, for example the CLV complex has been found to be associated with Rho/Rac small GTPase related proteins. These proteins may act as an intermediate between the CLV complex and a mitogen-activated protein kinase (MAPK) which is often involved in signalling cascades. KAPP is a kinase-associated protein phosphatase that has been shown to interact with CLV1. KAPP is thought to act as a negative regulator of CLV1 by dephosphorylating it.

Another important gene in plant meristem maintenance is WUSCHEL (shortened to WUS), which is a target of CLV signalling. WUS is expressed in the cells below the stem cells of the meristem and its presence prevents the differentiation of the stem cells. CLV1 acts to promote cellular differentiation by repressing WUS activity outside of the central zone containing the stem cells. STM also acts to prevent the differentiation of stem cells by repressing the expression of Myb genes that are involved in cellular differentiation.

Root apical meristems

10x microscope image of root tip with meristem
1 - quiescent center
2 - calyptrogen (live rootcap cells)
3 - rootcap
4 - sloughed off dead rootcap cells
5 - procambium

Unlike the shoot apical meristem, the root apical meristem produces cells in two directions. It is covered by the root cap, which protects the apical meristem from the rocks, dirt and pathogens. Cells are continuously sloughed off the outer surface of the root cap. The center of the root apical meristem is occupied by a quiescent center which has low mitotic activity. Evidence suggests the quiescent center does function as the zone of initials. Infrequent division of initial cells in the quiescent center is the source of cells for the root apical meristem. These initial cells and tissue patterns become established in the embryo in the case of the primary root and in the new lateral meristems in the case of secondary roots.

Intercalary meristem

In angiosperms, intercalary meristems occur only in monocot (particularly grass) stems at the base of nodes and leaf blades. Horsetails also exhibit intercalary growth. Intercalary meristems are capable of cell division and allow for rapid growth and regrowth of many monocots. Intercalary meristems at the nodes of bamboo allow for rapid stem elongation, while those at the base of most grass leaf blades allow damaged leaves to rapidly regrow. This leaf regrowth in grasses evolved in response to damage by grazing herbivores, but is more familiar to us in response to lawnmowers.

Floral meristem

When plants begin the developmental process known as flowering, the shoot apical meristem is transformed into an inflorescence meristem which goes on to produce the floral meristem which produces the familiar sepals, petals, stamens, and carpels of the flower.

In contrast to vegetative apical meristems and some exflorescence meristems, floral meristems are responsible for determinate growth, the limited growth of the flower to a particular size and form. The transition from shoot meristem to floral meristem requires floral meristem identity genes, that both specify the floral organs and cause the termination of the production of stem cells. AGAMOUS (AG) is a floral homeotic gene required for floral meristem termination and necessary for proper development of the stamens and carpels. AG is necessary to prevent the conversion of floral meristems to inflorescence shoot meristems, but is not involved in the transition from shoot to floral meristem. AG is turned on by the floral meristem identity gene LEAFY (LFY) and WUS and is restricted to the centre of the floral meristem or the inner two whorls. This way floral identity and region specificity is achieved. WUS activates AG by binding to a consensus sequence in the AG’s second intron and LFY binds to adjacent recognition sites. Once AG is activated it represses expression of WUS leading to the termination of the meristem.

Through the years scientists have manipulated floral meristems for economics reasons. An example is the mutant tobacco plant "Maryland Mammoth" In 1936 the department of agriculture of Switzerland performed several scientific tests with this plant. "Maryland Mammoth" is peculiar in this sense that it grows much faster than other tobacco plants.

Apical dominance

Apical dominance is phenomenon where one meristem prevents or inhibits the growth of other meristems. As a result the plant will have one clearly defined main trunk. For example, in trees the tip of the main trunk bears the dominant meristem. Therefore the tip of the trunk grows rapidly and is not shadowed by branches. If the dominant meristem is cut off, one or more branch tips will assume dominance. The branch will start growing faster and the new growth will be horizontal. Over the years the branch may begin to look more and more like an extension of the main trunk. Often several branches will exhibit this behaviour after the removal of apical meristem, leading to a bushy growth.

The mechanism of apical dominance is based on the plant hormone auxin. It is produced in the apical meristem and transported towards the roots in the cambium. If apical dominance is complete, it prevents any branches from forming as long as apical meristem is active. If the dominance is incomplete, side branches will develop.

Recent investigations into apical dominance and the control of branching have revealed a new plant hormone family termed strigolactones. These compounds were previously known to be involved in seed germination and communication with mycorrhizal fungi and are now shown to be involved in inhibition of branching.

Source: http://en.wikipedia.org/wiki/Meristem


See Also: Online Florist, Flower Shop, Flowers Delivery

Related Posts by Categories

Tidak ada komentar:

Posting Komentar